Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$\underline{ }$	z	$U_{\text {eq }}$
Tal	0	0	0	0.0050 (4)
Ta2	0.37078 (8)	0.31212 (8)	0	0.0066 (3)
Sb3	0.29588 (13)	0.05161 (13)	0	0.0066 (4)

The crystal structure was solved by direct methods (SHELXS97; Sheldrick, 1990). The space groups $I 4, I \overline{4}$ and I4/m were allowed based upon the observed systematic absences. The space group $I 4 / m$ was selected for initial refinements, and this group was confirmed by comparing the refinement results using the other two groups, which were identical with $I 4 / m$ within three s.u.'s. The Ta and Sb atoms were readily located from the E map and refined with anisotropic displacement parameters. The reflection (110) with $2 \theta=5.62^{\circ}$ was omitted from the refinement due to the close proximity and possible interference from the beam stop of the X-ray diffractometer. The largest residuals in the final difference map were $4.49 \mathrm{e}^{\AA} \AA^{-3}$ at a distance of $1.82 \AA$ from Tal and $-4.60 \mathrm{e}^{\AA^{-3}}$ on Tal.

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1990). Program(s) used to solve structure: SHELXS97. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

This work was supported by the 'Korean Research Foundation - Support for Faculty Research Abroad', and partially supported by the National Science Foundation (NSF DMR 96-27161).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1226). Services for accessing these data are described at the back of the journal.

References

Barrett, C. S., Cucka, P. \& Haefner, K. (1963). Acta Cryst. 16, 451453.

Boller, H. \& Nowotny, H. (1964). Monatsh. 95, 1272-1282.
Chen, H.-Y. \& Franzen, H. F. (1972). Natl Bur. Stand. Spec. Publ. 364, 651-652.
Furuseth, S., Selte, K. \& Kjekshus, A. (1965). Acta Chem. Scand. 19, 95-106.
Grønvold, F., Kjekshus, A. \& Raaum, F. (1961). Acta Cryst. 14, 930934.

Kumar, V. \& Heine, V. (1984a). Inorg. Chem. 23, 1498-1499.
Kumar, V. \& Heine, V. (1984b). J. Phys. F, 14, 365-379.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1990). TEXSAN. Single Crystal Structure Analysis Software. Version 6.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Mueller, M. H. (1977). Scr. Metall. 11, 693-693.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Simon, A. (1992). In Inorganic Solids, edited by A. K. Cheetham \& P. Day, p. 112. New York: Oxford University Press.

Acta Cryst. (1999). C55, 485-487

Strontium tetramolybdate dihydrate, $\mathbf{S r M o}_{4} \mathrm{O}_{13} \cdot \mathbf{2 H} \mathbf{H}$

William T. A. Harrison \dagger

Department of Chemistry, University of Western Australia, Nedlands WA 6907, Australia. E-mail: wtah@chem.uwa.edu.au
(Received 6 August 1998; accepted 19 October 1998)

Abstract

$\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains infinite sheets of distorted MoO_{6} and MoO_{5} moieties sharing edges and vertices. Inter-layer nine-coordinate Sr^{2+} cations $\left[d_{\mathrm{av}}(\mathrm{Sr}-\mathrm{O})=\right.$ 2.678 (3) \AA] and water molecules complete the structure, which is isostructural with that of $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Comment

$\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Fig. 1) is confirmed to be isostructural with $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Harrison et al., 1995). The polyhedral connectivity of the Mo / O groups results in buckled anionic sheets of stoichiometry $\left[\mathrm{Mo}_{4} \mathrm{O}_{13}\right]^{2-}$, which propagate normal to [100]. Both vertex-sharing and edge-sharing of the MoO_{6} and MoO_{5} groups occurs in this phase, which has essentially the same sheet structure as $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. 1. Fragment of the $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structure, drawn with 50% displacement ellipsoids. The very long Mo2-O11 ${ }^{\text { }}$ bond is indicated by a thin line (see text). Symmetry codes are as in Table 1.

The Srl atom is nine-coordinate to O atoms $\left[d_{\mathrm{av}}(\mathrm{Srl}-\mathrm{O})=2.678(3) \AA\right]$ in irregular coordination (Fig. 2). Four of these neighbours are the O atoms of

[^0]water molecules ($2 \times \mathrm{O} 14$ and $2 \times \mathrm{O} 15$). The bond valence sum (BVS) for Sr of 2.04 (expected: 2.00; Brown, 1996) indicates that this cation is well suited to its site in terms of satisfying its valence requirements, compared with the 'overbonded' Ba^{2+} cation ($\mathrm{BVS}=2.36$) in $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. 2. Detail of the SrO_{9} polyhedron in $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, with nonbonding $\mathrm{O} \cdots \mathrm{O}$ contacts shorter than $4 \AA$ indicated by thin lines. Symmetry codes are as in Table 1.

The $\mathrm{MolO}_{6}, \mathrm{Mo}_{3} \mathrm{O}_{6}$, and $\mathrm{Mo4O}_{6}$ octahedra in $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are highly distorted, with the Mo atoms displaced from the best centres (Balić Žunić \& Makovicky, 1996) of their octahedra by $0.42,0.41$, and $0.37 \AA$, for Mol, Mo3, and Mo4, respectively. The Mo2 atom has a less common coordination of five nearneighbour O atoms, in an approximate square-based pyramidal arrangement; Mo2 is displaced by $0.40 \AA$ towards O 9 in the apical position from the best leastsquares plane formed by $\mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 7$, and O 8 . A very long contact to O11 [2.835 (3) \AA A $]$, trans to O 9 , completes what could be regarded as a grossly distorted octahedron for this species. The corresponding Mo atom in $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ possesses an even longer sixth bond [$\mathrm{Mo}-\mathrm{O} 2.949$ (9) \AA]. Bond valence sums for the molybdenum species $[\mathrm{BVS}(\mathrm{Mol})=6.01$, $\operatorname{BVS}(\mathrm{Mo} 2)=5.94, \operatorname{BVS}(\mathrm{Mo} 3)=6.03$ and $\operatorname{BVS}(\mathrm{Mo} 4)=$ 6.10] are consistent with the sole presence of $\mathrm{Mo}^{\mathrm{VI}}$ in $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

The water molecules, O 14 and $\mathrm{Ol5}$, occupy the inter-layer region. Based on the riding model for the H atoms, each molecule makes two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as $\mathrm{O} 14-\mathrm{H} 1 \cdots \mathrm{O} 11[\mathrm{H} \cdots \mathrm{O} 1.81$ and $\mathrm{O} \cdots \mathrm{O} 2.778(5) \AA$ A $]$, $\mathrm{O} 14 — \mathrm{H} 2 \cdots \mathrm{O} 9$ [$\mathrm{H} \cdots \mathrm{O} 1.99$ and $\mathrm{O} \cdots \mathrm{O} 2.809$ (6) \AA A], O15-H3 $\cdots \mathrm{O} 10[\mathrm{H} \cdots \mathrm{O} 2.19$ and $\mathrm{O} \cdots \mathrm{O} 3.021(5) \AA]$ and $\mathrm{O} 15-\mathrm{H} 4 \cdots \mathrm{O} 9[\mathrm{H} \cdots \mathrm{O} 1.89$ and $\mathrm{O} \cdots \mathrm{O} 2.832(5) \AA ̊ \mathrm{~J}$. These hydrogen bonds do not participate in any inter-sheet linkages. The acceptor 09 species is the apical atom of the $\mathrm{Mo}_{2} \mathrm{O}_{5}$ square pyramid ; O10 and Oll form Mo-O-Mo links. Both O 14 and O 15 bond to two distinct Sr^{2+} cations.

Experimental

Small plates and shards of $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ of poor to average visual quality were prepared from $\mathrm{SrCO}_{3}(0.308 \mathrm{~g})$,
$\mathrm{MoO}_{3}(0.60 \mathrm{~g}), \mathrm{SeO}_{2}(0.463 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. These components were sealed in a 23 ml Teflon-lined hydrothermal bomb and heated to 453 K for 4 d , followed by cooling to ambient temperature over several hours. The solid product was recovered by vacuum filtration and washing with water.

Crystal data

$\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Mo $K \alpha$ radiation
$M_{r}=715.40$
Orthorhombic
Pbcn
$a=19.3111$ (12) \AA
Cell parameters from 6651 reflections
$\theta=1.0-27.5^{\circ}$
$b=7.5851$ (4) A
$\mu=9.04 \mathrm{~mm}^{-1}$
$c=15.5140(8) \AA$
$T=298 \mathrm{~K}$
$V=2272.4(4) \AA^{3}$
Shard
$Z=8$
$0.090 \times 0.005 \times 0.004 \mathrm{~mm}$ Colourless
$D_{x}=4.18 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

24914 measured reflections
2938 independent reflections
2742 reflections with
$I>0.5 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 26$
$k=0 \rightarrow 10$
$l=0 \rightarrow 21$
Intensity decay: none

Refinement

Refinement on F
$(\Delta / \sigma)_{\text {max }}<0.001$
$R=0.031$
$\Delta \rho_{\text {max }}=1.08 \mathrm{e}_{\AA^{-3}}$
$\omega \cdot R=0.022$
$\Delta \rho_{\text {min }}=-0.93 \mathrm{e}^{-3}$
$S=1.049$
2742 reflections
183 parameters
Only H-atom U 's refined
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Chebychev polynomial
(Carruthers \& Watkin,
1979) with 3 parameters
$0.736,0.980$ and 0.461

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Srl}-\mathrm{O} 3$	2.573 (4)	Mo2-07	1.886 (3)
$\mathrm{Srl}-\mathrm{O}^{1}$	2.737 (4)	Mo2-08	1.709 (4)
Srl -06 ${ }^{10}$	2.669 (4)	$\mathrm{Mo2-09}$	1.710 (4)
$\mathrm{Srl}-\mathrm{OB}^{\prime \prime \prime}$	2.590 (4)	Mo2-011	2.835 (3)
$\mathrm{Srl}-\mathrm{O} 13^{11}$	2.714 (3)	Mo3-O1'1	1.731 (3)
$\mathrm{Sr} 1-\mathrm{O} 14$	2.850 (4)	Mo3-O2	1.863 (3)
$\mathrm{Srl}-\mathrm{Ol} 4^{\text {in }}$	2.611 (4)	Mo3-07	2.198 (3)
Srl-O15'	2.777 (4)	Mo3-O10	1.741 (3)
Srl-O15'	2.583 (4)	Mo3-O10	2.358 (3)
$\mathrm{Mol}-\mathrm{Ol}$	2.354 (3)	Mo3-O11	1.917 (3)
Mol-O2	2.158 (3)	$\mathrm{Mo4-O}{ }^{\text {m }}$	1.875 (3)
$\mathrm{Mol}-\mathrm{O} 3$	2.010 (4)	Mo4-07	2.129 (3)
$\mathrm{Mol}-\mathrm{O} 4$	1.700 (4)	Mo4-O11	2.034 (3)
Mol-O5	1.891 (3)	Mo4-012	1.740 (3)
$\mathrm{Mol-O6}$	1.722 (4)	Mo4-O12	2.230 (3)
$\mathrm{Mo2-O} 2$	2.237 (3)	Mo4-013	1.698 (4)
Mo2-O3	1.915 (4)		
$\mathrm{Mol}-\mathrm{Ol}-\mathrm{Mo3}{ }^{\text { }}$	139.4 (2)	Mo2-O7-Mo3	106.17 (15)
$\mathrm{Mol}-\mathrm{O} 2-\mathrm{Mo2}$	97.31 (13)	Mo2-07-Mo4	154.41 (19)

$\mathrm{Mol-O2-Mo3}$	$156.37(19)$	$\mathrm{Mo3-O}-\mathrm{O}-\mathrm{Mo4}$	98.59 (14)
$\mathrm{Mo2-O2-Mo3}$	$105.45(15)$	$\mathrm{Mo3-O1O-Mo3}^{\prime \prime \prime}$	135.17 (18)
$\mathrm{Mol-O3-Mo2}$	$114.46(18)$	$\mathrm{Mo3-O11-Mo4}$	112.23 (16)
$\mathrm{Mol-O5-Mo4}^{1 x}$	$148.4(2)$	$\mathrm{Mo4-O12-Mo44}^{\prime \prime \prime}$	145.74 (19)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, 1-y,-z$; (iii) $-x, y, \frac{1}{2}-z$; (iv) $x-\frac{1}{2}, \frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $\frac{1}{2}-x, \frac{1}{2}+y, z ;$ (vi) $x-\frac{1}{2}, \frac{1}{2}-y,-z ;$ (vii) $\frac{1}{2}-x, y-\frac{1}{2}, z ;$ (viii) $x,-y, \frac{1}{2}+z ;$ (ix) $x,-y, z-\frac{1}{2}$.
The highest difference peak is $0.45 \AA$ from Srl. Crystal decay was monitored by collecting duplicate frames at the end of the experiment, and was found to be negligible.

Data collection: SMART (Siemens, 1997). Cell refinement: SMART. Data reduction: SMART. Program(s) used to refine structure: CRYSTALS (Watkin et al., 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: CRYSTALS.

I thank Allan White and Brian Skelton for assistance with the data collection. This work is supported by the Australian Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1224). Services for accessing these data are described at the back of the journal.

References

Balić Žunić, T. \& Makovicky, E. (1996). Acıa Cryst. B52, 78-81. Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Farrugia, L. J. (1997). J. Appl. Cṛst. 30, 565.
Harrison, W. T. A., Dussack, L. L. \& Jacobson, A. J. (1995). J. Solid State Chem. 116, 95-102.
Sheldrick, G. M. (1997). SADABS. Program for Absorption Corrections. University of Göttingen, Germany.
Siemens (1997). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1997). CRYSTALS. Chemical Crystallography Laboratory. University of Oxford, England.

[^0]: \dagger Present address: Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland.

